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Abstract. For the eigenvalues of the Hamiltonians1
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2 + 1
2βx

2m with m = 3, 4 . . .,
we propose representations reproducing the well known weak-coupling asymptotic perturbation
and strong-coupling expansions as limiting cases. Some analytical relations which the strong-
coupling coefficients must satisfy are presented.

1. Introduction

The quantum-mechanical systems described by the Hamiltonians with polynomial
interactions and especially the so-called anharmonic oscillators

Ĥ (m) = 1
2p̂

2+ 1
2x

2+ 1
2βx

2m (1)

with m = 2, 3, 4, . . ., have received considerable attention from many workers. One of the
reasons for such an interest may be explained by the fact that the anharmonic oscillators
provide the simplest examples of the quantum-mechanical systems for which the wave
equation cannot be solved exactly. Approximation schemes should be used to study the
properties of such systems and, due to their relative simplicity, anharmonic oscillators
provide convenient models for the development of such schemes. One can mention, for
example, that the studies of the anharmonic oscillators have contributed considerably to the
understanding of large-order perturbation theory (Le Guillou and Zinn-Justin 1990), to the
development of the methods of handling the divergent expansions in quantum mechanics
(Simon 1970, 1982, Graffiet al 1970, Hirsbrunner and Loeffel 1975, Artecaet al 1990),
to the development of ‘exact quantization schemes’ (Voros 1983, 1994, Ecalle 1981, 1994,
Delabaere and Pham 1997, Delabaereet al 1997) and many other computational methods
(Vinette andČižek 1991, Fernandez 1992, Janke and Kleinert 1995, Weniger 1996a, b,
Ivanov 1996). A review of the works on the anharmonic oscillators can be found in the
paper by Killingbeck (1977).

The best studied example of the anharmonic oscillators is provided by the quartic
anharmonic oscillator (m = 2 in the equation (1)). The properties of eigenvalues of the
quartic oscillator are known in detail from the works of Simon (1970), and Bender and Wu
(1969, 1971, 1973).

In the present paper we deal with the oscillators of higher anharmonicities, sextic (m = 3
in the Hamiltonian (1)) and octic (m = 4 in the Hamiltonian (1)). We recall some known
properties of eigenvalues of the anharmonic oscillators which we shall need later.
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For the sake of simplicity we consider the ground-state eigenvalues of the Hamiltonians
(1), although the results presented in this present paper can be equally applied to the
excited states of the corresponding Hamiltonians (the excited levels ofĤ (m) will be briefly
considered in the final part of the paper).

It is known from the works of Simon (1970) and Bender and Wu (1969, 1971, 1973) that
energy eigenvalues of the Hamiltonians (1) considered as functions of the complex variable
β allow analytical continuation onto multi-sheeted Riemann surfaces. On their Riemann
surfaces these functions possess a very complex structure of singular points. Thus, for
example, the result of such analytic continuation in the case of the quartic anharmonic
oscillator is an analytic function defined on the three-sheeted Riemann surface on which the
point β = 0 is not an isolated singularity (Simon 1970). This analytic function was shown
(Bender and Wu 1969, Simon 1970) to have on its Riemann surface an infinite number of
branch-point singularities (the so-called Bender–Wu branch points), the pointβ = 0 being
the point of accumulation of these branch-point singularities. The Bender–Wu singularities
were shown to arise at the points where different anharmonic oscillator eigenvalues coincide.
It was shown (Bender and Wu 1969) that all anharmonic oscillator eigenvalues are analytic
continuations of each other with respect to the complex anharmonicity constant. The
distribution of the Bender–Wu branch points has been studied by many authors (Bender
and Wu 1969, Simon 1970, Shanley 1986, Delabaere and Pham 1997).

In the present paper we consider the single-valued branches of the analytic functions
emerging as a result of an analytic continuation process of the ground-state eigenvalues of
the Hamiltonians (1). The single-valued branches of these analytic functions can be singled
out if one cuts the complexβ-plane along the negative real axis. We shall be interested
in the present paper in those single-valued branches which assume ‘physical’ values on
the real positiveβ-axis, i.e. which coincide there with the ground-state eigenvalues of the
Hamiltonians (1). For these functions we shall adopt the notationE(m)(β). The functions
E(m)(β) are known to be analytic single-valued functions ofβ, regular everywhere in the
cut complexβ-plane, except atβ = 0 andβ = ∞ (Loeffel and Martin 1970).

Formal application of Rayleigh–Schrödinger perturbation theory to the Hamiltonians
(1), with the termβx2m/2 being considered as a perturbing operator, yields a divergent
expansion for the eigenvaluesE(m)(β) of the Hamiltonians (1)

E(m)(β) ∼
∞∑
n=0

E(m)n βn (2)

which can be shown to be asymptotic. For the quartic case this fact was proved by Simon
(1970). The coefficientsE(m)n rapidly grow withn. The asymptotic behaviour ofE(m)n for
the ground-state of the quartic, sextic and octic oscillators is known in analytical form after
the works of Bender and Wu (1969, 1971, 1973). The corresponding formulae for the sextic
and octic oscillators read

E(3)n ∼ (−1)n−1

√
32

π2
0(2n+ 1/2)(16/π2)n (3)

E(4)n ∼ (−1)n−1

√
135 [0(2/3)]3

2π5
0(3n+ 1/2) 250n

(
3[0(2/3)]3

4π2

)3n

(4)

where0(z) is Euler gamma function.
In the opposite limit of the largeβ-values a convergent expansion can be obtained for

the eigenvalues of the Hamiltonians (1) (Simon 1970)

E(m)(β) = β1/(m+1)
∞∑
n=0

c(m)n β−2n/(m+1). (5)
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This expansion (the so-called strong-coupling expansion) can be viewed as an application
of Rayleigh–Schr̈odinger perturbation theory to the Hamiltonians (1), the termx2/2 being
considered as a perturbing operator. One can show that, if the termx2 is considered in the
Hamiltonians (1) as a perturbation, the family of Hamiltonians (1) is an analytic family in
the sense of Kato (1976) and, therefore, the strong-coupling expansion (5) has a non-zero
radius of convergence. For the quartic case this fact was proved by Simon (1970), and for
the higher anharmonicities it was proved by Weniger (1994).

Since the eigenvalues and eigenfunctions of the Hamiltonianp̂2/2+ βx2m/2 are not
known in closed form, the coefficients of the strong-coupling expansion can only be
computed numerically. The first ten coefficients of the strong-coupling expansion for the
sextic oscillator and the first six coefficients for the octic oscillator are given in the paper
by Weniger (1996b).

Despite the fact that the strong-coupling coefficientsc(m)n can only be computed
numerically, one can obtain, as we shall see, some analytical information aboutc(m)n .

The question we shall be dealing with in the present paper, is how to ‘combine’ both
expansions (2) and (5). We shall show that a representation for the eigenvaluesE(m)(β)

of the Hamiltonians (1) can be constructed from which both expansions (2) and (5) can be
obtained as two limiting cases. For the quartic oscillator the corresponding procedure has
been described in our paper (Ivanov 1998). In the present paper we give a generalization
of this procedure. We show that analogous representations can be constructed for ground
and excited states of the anharmonic oscillators of higher anharmonicities (m = 3, 4 . . . in
the (1)). Explicit formulae are given for the sextic (m = 3) and octic (m = 4) oscillators.

2. Theory

Let us consider the functionsG(m)(β) = E(m)(β)/β where we use the notation introduced
above for the single-valued branches of the corresponding analytic functions. From the
discussion of the analytic properties ofE(m)(β) it follows thatG(m)(β) are single-valued
analytic functions regular everywhere except atβ = 0 andβ = ∞ in theβ-complex plane
cut along the negative real axis. From equation (5) it follows thatG(m)(β) tend uniformly
to zero when Reβ → +∞. It is known (Markushevitch 1968) that these conditions are
sufficient to guarantee that for Reβ > 0 the functionsG(m)(β) can be represented as
Laplace transforms of certain functionsf (m)(β) and, hence for Reβ > 0, E(m)(β) can be
represented as

E(m)(β) = β
∫ ∞

0
f (m)(t) e−βt dt (6)

where the functionsf (m)(t) are determined uniquely as inverse Laplace transforms of
E(m)(β)/β. A representation similar to (6) has been considered by Delabaereet al (1997)
for the quartic anharmonic oscillator. With formula (6) holding for Reβ > 0 and the
strong-coupling expansion (5) converging for sufficiently large,|β|, there is a region of the
β-complex plane where both equations (6) and (5) are valid. Therefore, one may expect
that a connection can be established between the functionsf (m)(t) under the integral sign in
equation (6) and the coefficientsc(m)n of the strong-coupling expansion (5). This connection
can be easily found. Inverting the Laplace transformation (6), one obtains forf (m)(t)

f (m)(t) = 1

2π i

∫ c+i∞

c−i∞

E(m)(β)

β
eβt dβ. (7)
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The integral in equation (7) can be taken along any straight line Reβ = c > 0. In particular,
one can choose the contour of integration so that everywhere on the contour the strong-
coupling expansion is applicable. Then, substituting under the integral sign in equation (7)
the strong-coupling expansion (5) and performing term-by-term integration with the help of
the known formula (Abramovitz and Stegun 1964)

1

0(z)
= 1

2π i

∫
C

x−z ex dx (8)

where the contour of integrationC is a straight line Rex = constant> 0, one obtains the
following formula for the functionsf (m)(t):

f (m)(t) =
∞∑
n=0

c(m)n

0((2n+m)/(m+ 1))
t (2n−1)/(m+1). (9)

The coefficientsc(m)n in equation (9) are the coefficients of the strong-coupling expansion (5).
It is easy to see that, since the strong-coupling expansion (5) has a non-zero radius of
convergence, the series (9) converges for anyt .

Formula (9) establishes a connection between the functionsf (m)(t) under the integral
sign in equation (6) and the coefficientsc(m)n of the strong-coupling expansion (5).

Since formula (6) holds for Reβ > 0 and hence holds also in the region where the
asymptotic expansion (2) can be used, one may expect another connection to exist between
this formula and the asymptotic expansion (2). This connection can be established as
follows. We note that the asymptotic expansion (2) can be obtained from the formula (6)
if the functionsf (m)(t) can be represented as

f (m)(t) = E0+ g(m)(t) (10)

whereE(m)0 is the zero-order coefficient of the perturbation expansion (2) and the functions
g(m)(t) decay sufficiently rapidly whent → ∞ so that all integrals

∫∞
0 |g(m)(t)|tn dt for

n > 0 exist.
If assumption (10) is valid then, expanding the exponential function under the integral

sign in equation (6) and integrating the series obtained term-by-term, one obtains forE(m)(β)

the series (2), where for the coefficientsE(m)n with n > 0 one has

E(m)n =
(−1)n−1

(n− 1)!

∫ ∞
0
g(m)(t) tn−1 dt. (11)

It is easy to see that the series thus obtained is Poincaré asymptotic whenβ → 0 remaining
in the half-plane Reβ > 0. To establish this fact, one should only note that according to
our assumption (10) all integrals

∫∞
0 |g(m)(t)|tn dt for n > 0 exist. The remainder of the

series obtained as a result of the above-described procedure of term-by-term integration is

E(m)(β)− E(m)N (β) = β
∫ ∞

0
(e−βt − e−βtN−1) g

(m)(t) dt (12)

whereE(m)N (β) is N th partial sum of the series and e−βtN−1 is the sum of the firstN −1 terms

of the Taylor series for e−βt . For e−βt − e−βtN−1 one has for Reβ > 0

|e−βt − e−βtN−1| =
1

N !
|(βt)N 1F1(1, N + 1,−βt)| 6 |βt |

N

N !
(13)

where 1F1(1, N + 1,−βt) is a confluent hypergeometric function. For Reβ > 0 the
inequality on the right-hand side of equation (13) is easily obtained with the help of the
well known integral representation for confluent hypergeometric functions (Abramovitz and
Stegun 1964). From equations (12) and (13) one obtains|E(m)(β)−E(m)N (β)| = O(|β|N+1)
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when β → 0, Re β > 0, i.e. the series obtained is Poincaré asymptotic whenβ → 0
remaining in the half-plane Reβ > 0. Since the asymptotic series of a given function is
determined uniquely and the asymptotic expansion (2) is known to represent the functions
E(m)(β) inside some sectors|arg β| < θm, the coefficientsE(m)n defined by formula (11)
must coincide with the coefficients of the asymptotic expansion (2).

Table 1. The functionf (m)(t) and its asymptotic approximations̃f (m)(t).

Sextic oscillator Octic oscillator

t f (3)(t) f̃ (3)(t) f (4)(t) f̃ (4)(t)

1 0.627 529 97 0.666 006 00 0.670 650 45 0.698 549 52
5 0.537 200 57 0.552 975 75 0.572 942 75 0.592 524 36

10 0.518 338 18 0.525 914 47 0.546 586 72 0.559 820 13
15 0.511 296 51 0.515 693 13 0.534 769 87 0.544 652 44
20 0.507 707 88 0.510 526 72 0.527 812 00 0.535 612 39
25 0.505 586 64 0.507 513 62 0.523 158 72 0.529 537 88
30 0.504 214 33 0.505 595 52 0.519 803 40 0.525 151 81
35 0.503 268 44 0.504 299 06 0.517 259 62 0.521 827 89
40 0.502 582 90 0.503 383 37 0.515 260 52 0.519 219 26
45 0.502 063 36 0.502 714 38

In the second column of table 1 we present the numerical values of the functionf (3)(t)

computed for differentt-values with the help of series (9) for the ground-state of the sextic
oscillator. In the fourth column of this table we present the numerical values off (4)(t),
computed according to (9) for the ground-state of the octic oscillator. In both cases we
used the data for the coefficients of the strong-coupling coefficients calculated by Weniger
(1996b). In this work the first ten strong-coupling coefficients for the sextic and the first six
strong-coupling coefficients for the octic oscillator were computed. With the presence of
the gamma function in the denominator in equation (9) ensuring rapid convergence of the
series, we were able to calculate the functionsf (m)(t) up to rather large values oft even
with the relatively small number of terms of series (9) taken into account. We estimate
that taking account of the first ten terms of series (9) for the sextic oscillator allows one to
computef (3)(t) with an accuracy to better than 1 part in 106 for t ≈ 10, 1 part in 104 for
t ≈ 30 and 1 part in 103 for t ≈ 40. For the octic oscillator we believe that taking account
of the first six terms of the series (9) allows one to computef (4)(t) with an accuracy to
better than 1 part in 104 for t ≈ 10, 1 part in 103 for t ≈ 30 and 1 part in 102 for t ≈ 40.

Based on formula (10) one would expect that both for the sextic and octic oscillators the
functionsf (m)(t) would tend to the limiting valueE(m)0 (which is in both cases, of course,
equal to one-half the ground-state energy of the harmonic oscillator). The data from the
second and fourth columns of table 1 give enough evidence that this is indeed the case.

More detailed information about the functionsf (m)(t) can be obtained if we analyse the
large-n asymptotic behaviour of the coefficientsE(m)n following from equation (11). When
n → ∞ in equation (11) it is the region of larget-values which contributes mostly to
the integral. Therefore, if the large-t asymptotic behaviour of the functionsg(m)(t) were
known, the large-n asymptotic behaviour of the integrals (11) could be found with the
use of the standard asymptotic methods. Usually, in the applications of the Borel method
or when finding the large-order asymptotic behaviour of the perturbation coefficients from
dispersion relations (Simon 1970, Bender and Wu 1971, Herbst and Simon 1978, Silverstone
et al 1979, Le Guillou and Zinn-Justin 1990) one knows the required asymptotic properties
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and finds the asymptotic behaviour of the perturbation coefficients by applying the saddle-
point method. In our problem the situation is inverse. The asymptotic behaviour of the
perturbation coefficients is known, and is given by formula (2). We will try to find the large-t

asymptotic behaviour of functionsg(m)(t) which would yield the correct large-n asymptotic
behaviour of the integrals (11). To reproduce the leading-order asymptotic behaviour of
the coefficients of the perturbation expansion (2) given in the sextic and octic cases by
formulae (3) and (4), it is sufficient to suppose that the functional form of the leading term
of the asymptotic behaviour ofg(m)(t) is

g(m)(t) ∼ Atα exp(−btγ ) (14)

whereA, α, b, γ are some constants (which are, of course, different for the sextic and octic
oscillators). Substituting this expression into equation (11) and performing the integration
one obtains forn→+∞

E(m)n ∼
(−1)n−1

(n− 1)!

A

γ

0((α + n)/γ )
b(α+n)/γ

∼ (−1)n−1 A√
γ b(α+n)/γ

en−(n/γ )
(
n

γ

)(α+n)/γ
n−n (15)

where deriving the second asymptotic equality in equation (15) we used the well known
asymptotic formula (Abramovitz and Stegun 1964) for the gamma function.

Comparing the asymptotic behaviour given by equation (15) with the leading large-n

asymptotic behaviour ofE(m)n given by equations (3) and (4), one can easily find the
parameters in formula (14) for the sextic and octic oscillators. It is important to note
that once the ansatz (14) is assumed to describe the large-t asymptotic behaviour ofg(m)(t),
all the parameters in (14) are determined uniquely. Thus, one obtains the following large-t

asymptotic formulae for the functionsf (m)(t) from equation (9) in the sextic and octic cases

f (3)(t) =
∞∑
n=0

c(3)n

0((2n+ 3)/4)
t (2n−1)/4 ∼ 1

2
+ 8√

3π3
exp

{
−
(

27π2t

64

)1/3}
(16)

f (4)(t) =
∞∑
n=0

c(4)n

0((2n+ 4)/5)
t (2n−1)/5 ∼ 1

2
+
√

135 [0(2/3)]3

4π4
exp{−(bt)1/4} (17)

where in the last equation

b = 128

3375

(
4π2

3[0(2/3)]3

)3

.

As we have seen, such asymptotic behaviour of the functionsf (m)(t) ensures that
equation (11) will reproduce the correct large-n asymptotic behaviour of the coefficients of
the perturbation expansion for the sextic and octic oscillators.

In the third column of the table 1 we present the numerical values of the right-hand side
of equation (16) (designated̃f (3)(t)), the fifth column of this table contains the numerical
values of the right-hand side of equation (17) (designatedf̃ (4)(t)) for different values of
t . Comparison of these values with those computed according to formula (9) gives enough
evidence to show that formulae (16) and (17) describe correctly the large-t asymptotic
behaviour of functions (9) for the sextic and octic anharmonic oscillator.
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3. Remarks

The goal of the present paper was to establish the formulae (6), (16) and (17). As we have
seen, the strong-coupling and the weak-coupling expansions for the ground-state energies
of the anharmonic oscillators considered can be obtained from equation (6) as two limiting
cases.

To avoid confusion we would like to emphasize that the present results have been
obtained for the single-valued branches of the corresponding analytic functions. The
formula (6) holds for theβ-values satisfying|arg β| < π/2. What would happen if
we allowedβ to quit this region and, in particular, whether analogous formulae could
be obtained for other branches of the corresponding analytic functions is an interesting
question which we believe deserves separate consideration.

We have given analytic relations which the strong-coupling coefficientsc(m)n must satisfy.
The fact that such relations can be obtained is itself rather curious in our opinion, taking
into account the fact thatc(m)n can only be computed numerically. Equations (16) and (17)
provide the ‘sum rules’, which can serve to check the accuracy of the calculations of the
strong-coupling coefficients. An interesting question is whether one can obtain any analytic
information about large-order behaviour of the strong-coupling coefficients with the help of
equations (16) and (17). If it were possible, one could hope to find an analytical estimation
of the radius of convergence of the strong-coupling expansion (5) for the ground-state of
the sextic and octic anharmonic oscillators.

Our derivation of formulae (6), (9), (16) and (17) used only the facts thatE(m)(β)

is analytic and regular for Reβ > 0, and the fact that the strong-coupling expansion (5)
holds forE(m)(β). These conditions guarantee thatE(m)(β) can be represented as a Laplace
integral (6). It is easy to see that both these conditions are fulfilled for the excited states
of the anharmonic oscillators considered and, moreover, for the states of the oscillators of
higher anharmonicities (m = 5, 6 . . .) in formula (1). The corresponding formulae are quite
analogous to equations (6), (9), (16) and (17) and we do not present them here.
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